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Chiral sulfur-containing compounds have important applications
in many areas of chemistry and biology, serving, for example, as
antibiotics, as ligands for metal-based catalysts, as catalysts
themselves, and as chiral auxiliaries.1 With respect to the catalytic
enantioselective synthesis of sulfur-containing molecules, the
conjugate addition of thiols to the � position of R,�-unsaturated
carbonyl compounds has been the focus of intense interest.2

Furthermore, there has been recent progress in catalytic asymmetric
sulfenylation R to a carbonyl group.3 In contrast, we are not aware
of any methods for catalytic enantioselective sulfenylation of the
γ position of carbonyl compounds.4

Trost and others have established that phosphines can catalyze
certain γ additions of carbon, nitrogen, and oxygen nucleophiles
to 2,3-allenoates and/or 2-alkynoates;5-8 on the other hand, the
corresponding γ additions of sulfur nucleophiles have not been
achieved. In this report, we describe a method that not only
accomplishes γ functionalizations with this new family of nucleo-
philes but also provides highly enantioenriched products (eq 1).9-12

In the case of the carbon, nitrogen, and oxygen nucleophiles that
have previously been employed in phosphine-catalyzed γ additions,
there is generally no reaction between the nucleophile and an
allenoate at room temperature in the absence of a catalyst. In
contrast, thiols do react with allenoates, but not to afford the
γ-addition product (Table 1, entry 1); instead, the uncatalyzed
process leads to addition of the thiol at the � position.

Nevertheless, through the use of an appropriate catalyst, the
regioselectivity of the addition process can be altered to generate the
desired γ-addition product not only in good yield but also with very
good enantioselectivity. In particular, chiral bisphosphine TangPhos
(1), originally developed by Zhang as a ligand for Rh-catalyzed
asymmetric hydrogenations of olefins,13 along with a carboxylic acid
additive,14 serves as a useful catalyst system, furnishing the γ-sulfe-
nylated product in 89% yield and 92% ee (Table 1, entry 2). To the
best of our knowledge, this is the first application of 1 as an effective
chiral nucleophilic catalyst.15,16

In the absence of carboxylic acid 2, or when 2 is replaced by
phenol,5d very little γ-addition product is observed (Table 1, entries 3
and 4). Other chiral phosphines (e.g., see entries 55d and 67d) give
lower yields and/or ee. Use of 1.1 equiv of thiol leads to a small loss
in yield and no change in enantioselectivity (entry 7).

This phosphine-catalyzed asymmetric γ addition of thiols proceeds
in good yield for an array of allenoates (Table 2).17 Thus, carbon-sulfur

bond formation occurs with high ee in the presence of a variety of
functional groups, including alkenes, alkynes, ethers, acetals, esters,
and halides.

This method for the catalytic asymmetric synthesis of sulfides
is versatile with respect to the thiol as well as the allenoate (Table

Table 1. Effect of Reaction Parameters on the Catalytic
Asymmetric γ Addition of Thiols to Allenoatesa

entry change from the “standard conditions” yield (%)b ee (%)

1 no (+)-1, no 2 0c -
2 none 89 92
3 no 2 <5 -
4 PhOH instead of 2 <5 -
5 (S)-3 instead of (+)-1 <5 -
6 (S)-4 instead of (+)-1 81 80
7 1.1 instead of 3 equiv of thiol 80 92

a All data are averages of two experiments. b Determined by 1H NMR
analysis with dibromomethane as an internal standard. c Addition occurred
predominantly at the � position.

Table 2. Catalytic Asymmetric γ Addition of Thiols to Allenoates:
Scope with Respect to the Allenoatea

a All data are averages of two experiments. b Yield of purified product.
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3). A variety of substituted benzyl thiols, including hindered
substrates, add to the γ position in good yield and ee (entries 1-5).
Furthermore, heterocycles are compatible with the reaction condi-
tions (entries 6 and 7). TangPhos also efficiently catalyzes the
asymmetric γ addition of thiols that are not benzylic (entries 8-11);
for the substrate illustrated in entry 11, exclusive γ addition by
sulfur (none by oxygen7) is observed.

The enantioenriched sulfides produced via phosphine-catalyzed
γ additions to allenoates can be transformed into other useful
compounds. For example, the sulfide can be converted into a thiol
(eq 2), or highly stereoselective functionalizations of the olefin can
be achieved (eq 3).

In summary, the first method for catalytic asymmetric γ sulfeny-
lation of carbonyl compounds has been developed. Thus, in the
presence of an appropriate catalyst, thiols not only add to the γ position
of allenoates, overcoming their propensity to add to the � position in
the absence of a catalyst, but do so with very good enantioselectivity.
Sulfur nucleophiles are now added to the three families of nucleophiles

(carbon, nitrogen, and oxygen) that had earlier been shown to
participate in catalyzed γ additions. The phosphine catalyst of choice,
TangPhos, had previously only been employed as a chiral ligand for
transition metals, not as an efficient enantioselective nucleophilic
catalyst. The development of additional phosphine-catalyzed asym-
metric reactions is underway.
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Table 3. Catalytic Asymmetric γ Addition of Thiols to Allenoates:
Scope with Respect to the Thiola

a All data are averages of two experiments. b Yield of purified product.
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